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This study investigated the critical design 

parameters of classical rectangular SSSS plate 

under uniformly distributed lateral load. The study 

used third order total potential energy functional 

for isotropic rectangular thin plate with small 

deflection, external work was substituted into the 

third order total potential energy functional and the 

general equation of a classical rectangular plates 

under pure bending was obtained. The plate general 

equation was minimized with respect to deflection 

to obtain the equilibrium of forces governing 

equation of thin rectangular plate. The resistant 

forces were solved with Split-deflection approach 

and the solution gave the general polynomial 

deflection equation. Satisfying the boundary 

conditions of SSSS plate with respect to the general 

polynomial deflection equation gave the SSSS 

plate deflection equation. The general polynomial 

deflection equation was simplified and substituted 

into the plate governing equation to obtain the 

amplitude of deflection function, close integral was 

performed on the shape function for SSSS 

boundary conditions with respect to the general 

stiffness equation, which gave the peculiar stiffness 

and non-dimensional deflection coefficients of 

SSSS plate. Limit state conditions, such as ultimate 

limit state of stress  U ≤ 𝕌𝟎 and serviceability 

limit state of deflection (Wmax  < Wa)  were 

satisfied and the critical design parameters for 

thickness (tc) and lateral imposed load  qic  were 

obtained. Numerical examples were performed 

with the critical design equations and results were 

presented for critical design thicknesses  tc  
suitable to withstand a given set of loads and 

critical design imposed loads  qic  a given 

thickness can withstand for SSSS plate. 

Keywords: Pure Bending, Critical 

Thickness,Critical Impose Load,Limit State. 

 

𝐍𝐨𝐭𝐚𝐭𝐢𝐨𝐧𝐬: K: Stiffness of the material, σ: Stress, 

σx : x axis stress, σy : y axis stress, σz : z axis stress, 

τyx : y – x planer stress (shear stress in y – x plane), 

ε: Strain, εx : x axis strain, εy : y axis strain, εz : z 

axis strain, ɣxy : y – x planer strain (shear strain in y 

– x plane), L: Length of the material, E: Young 

modulus of elasticity, V: Work, U: Internal (strain) 

energy, D: Flexural rigidity of the plate, Π: Total 

potential energy of the plate, τ: Shear stress of the 

plate, ɣ: Shear strain of the plate, kq : Load 

stiffness, kx : Material stiffness on x plane, kxy : 

Material stiffness on x – y plane, ky : Material 

stiffness on y plane, x: Primary axis of the plate. 

That is the shorter of the two axes of the major 

plane of the plate, y: Secondary axis of the plate. 

That is the longer of the two axes of the major 

plane of the plate, z: Tertiary axis of the plate. That 

is the shortest of the three axes of the plate a: 

Length of the primary dimension of the plate, b: 

Length of the secondary dimension of the plate, t: 

Thickness of the plate or the length of the tertiary, 

w
i
x: The first derivative of the deflection in the x-

axis, w
ii

x: The second derivative of the deflection in 

the x-axis, A: Amplitude of the deflection function 

(Coefficient of deflection), D: flexural rigidity of 

plate, µ: Poisson’s ratio of plate material, R: Non 

dimension axis (quantity) parallel to x axis, A: 
Amplitude of the equation (Coefficient of 

deflection), h: Shape function, Q: Non dimension 

axis (quantity) parallel to y axis, Wmax  : Maximum 

deflection, Wa : Allowable deflection, q: Applied 

Load, φ: Unit weight of material, U : Total strain 

energy per volume, 𝕌0: Allowable total strain 

energy per volume, 

Kc : Maximum deflection Coefficient, SLS: 

Serviceability Limit State, ULS: Ultimate Limit 
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State, SSSS:Four edges of the plate are simple 

supported, 

hmax : Deflected shape function at the center of the plate, qicD : 
Critical Imposed load for deflection limit state pure 

bending analysis of rectangular classical plate, tcD : 
Critical thickness deflection for limit state pure 

bending analysis of rectangular classical plate, qicE : 
Critical Imposed load for elasticlimit state pure 

bending analysis of classical rectangular plate, tcE : 
Critical thickness for elasticlimit state pure bending 

analysis of classical rectangular plate, qic : Critical 

Imposed load parameter, tc : Critical thickness 

parameter. 

 

I. INTRODUCTION 
A plate is a structural component limited 

by two parallel planes called faces, and a 

cylindrical surface, called an edge. The division 

between the plane appearances is referred to as the 

thickness (t) of the plate, which it is common to 

isolate the thickness into equivalent parts by a 

plane parallel to its faces. This plane is known as 

the center plane (or basically, the mid-plane), 

where a and b are principal measurements, and t is 

the thickness (Yamaguchi, 1999). Plate is one of 

the continuum structure generally used in 

buildings, bridges, automobiles, hydraulic 

structures, pavements, containers, airplanes, 

missiles, ships, instruments, machine parts, table 

tops, street manhole covers, side panel, roof deck, 

tank bottom and so forth. As indicated by the 

definition applied to thin plate, the proportion of 

the thickness (t) to the smaller span length (a) 

should be less than 1/20 (Mansfield, 2005). We 

shall consider only small deflections of thin plates, 

which is a consistent magnitude of deformation 

found in plate structure. It is expected, except if 

generally indicated, that plate materials are 

homogeneous and isotropic. A homogenous 

material presents identical properties all through 

and when the material is the same in all directions, 

the material is called isotropic (Ventsel and 

Krauthammer, 2001). The maximum deflection of 

a laterally loaded plate has been obtained using the 

split deflection method (Ibearugbulem et al. 2016), 

the maximum deflection was used to satisfy SSSS 

plate boundary conditions so as to obtain the 

peculiar deflection equation of SSSS classical 

rectangular plate. With the non-dimensional total 

potential energy functional of a classical 

rectangular thin plate subjected to lateral load, the 

amplitude of the deflection function of SSSS plate 

was formulated.Also, we move further in getting 

the stiffness of SSSS plate before the critical 

parameter was solved. Satisfying the SLS of 

deflection and ULS of elasticity, the critical design 

parameters for Lateral impose load and thickness 

was obtained, this equation was used in solving for 

the critical lateral load a specified plate thickness 

can withstand and also critical thickness for a 

specified lateral load. From the literature, it has 

been discovered that there is no exploration by past 

researchers on the determination of critical design 

parameters of classical rectangular plates under 

uniformly distributed lateral load, a reason why the 

results presented in this study represent a novelty 

element brought by this research, which will be an 

advantage for plate designs. With this research a 

solution to critical load which a known plate 

thickness can withstand and also the critical 

thickness of a plate that can withstand a specified 

loading, can be known under specified conditions 

of operation. 

 

II. THEORETICAL BACKGROUND 
The study used Kirchhoff’s hypotheses on 

total strain energy, work energy principle, 

kinematics, stress deflection relationship and 

constitutive relationship to derive the third order 

total potential energy functional for isotropic 

rectangular thin plate with small deflection, 

external work was substituted into the third order 

total potential energy functional and the general 

equation of a classical rectangular plates under pure 

bending was obtained. The plate general equation 

was minimized with respect to deflection to obtain 

the equilibrium of forces governing equation of 

thin rectangular plates. The resistant forces were 

solved with Split-deflection approach and the 

solution gave the general polynomial deflection 

equation. 
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III. METHODOLOGY 
The method used in this work is as presented below. 

3.1 Deflection Function for (SS) Edge Condition (Simply Supported Edge) 

 

 

 

 

 

 

 

 

 

 

 

 

 

SS boundary conditions: 

wR R = 0 = 0wR
′′  R = 0 = 0                                                                                                                                           1 

wR R = 1 = 0        wR
′′  R = 1 

= 0                                                                                                                                            2 

wQ Q = 0 = 0      wQ
′′  Q = 0 

= 0                                                                                                                                            3 

wQ Q = 1 = 0     wQ
′′  Q = 1 

= 0                                                                                                                                             4 

General orthogonal polynomial deflection equation of a plate is given by: 

w =  a0 + a1R + a2R2 + a3R3 + a4R4 .  b0 + b1Q + b2Q2 + b3Q3

+ b4Q4                                                                               5 
Substituting the boundary conditions in Equations (1) to (4) into Equation (5) gives: 

a0 = 0,  a1 = a4 ,  a2 = 0,  a3 = −2a4 , b0 = 0,  b1 = b4 ,  b2 = 0,  b3

= −2a4                                                                       6 

Substituting Equations (6) into Equation (5) gives: 

wSSSS = a4 R − 2R3 + R4 . b4 Q − 2Q3

+ Q4                                                                                                                            7 
Equation (7) is the Peculiar Deflection Function for SSSS Plate 

When, 

A= a4 . b48 

h =  R − 2R3 + R4 .  Q − 2Q3 + Q4 9 

 

3.2Stiffness Coefficient for SSSS Classical Rectangular Plate. 

From Equation (7), (8) and (9) gives: 

𝐰𝐒𝐒𝐒𝐒
= 𝐀𝐡                                                                                                                                                                          𝟏𝟎 
When, 

A= Amplitude of the deflection function (Coefficient of deflection) 

h = Shape function 

The non-dimensional third order total potential energy functional of a classical rectangular thin plate subjected 

to lateral load was formulated by Adewale in his master’s degree thesis and presented as in Equation (11) 

Π

=
D

2
   

∂3Ah

∂R3
.
∂Ah

∂R
+

2

∝2
.
∂3Ah

∂R ∂Q2
.
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∂R
+

1

∝4
.
∂3Ah

∂Q3
.
∂Ah

∂Q
 ∂R ∂Q

1

0

1

0

−  qa4Ah 
1

0

1

0

∂R ∂Q                                                                                                                                      11 

Differentiating Equation (11) with respect to A  and equating to zero gives maximum value of A 
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plate. 
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Figure 1: Representation of SSSS plate under lateral uniform load (q). 

 

 

Figure 1: Deflection function for SSSS plate. 
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DA   
∂3h

∂R3
.
∂h

∂R
+

2

∝2
.
∂3h

∂R ∂Q2
.
∂h

∂R
+

1

∝4
.
∂3h

∂Q3
.
∂h

∂Q
 ∂R ∂Q

1

0

1

0

− qa4   h 
1

0

∂R ∂Q

1

0

= 0               12 

A =
qa4     h 

1

0

1

0
 ∂R ∂Q

D   
∂3h

∂R3
.
∂h

∂R
+

2

∝2
.
∂3h

∂R ∂Q2
.
∂h

∂R
+

1

∝4
.
∂3h

∂Q3
.
∂h

∂Q
 ∂R ∂Q

1

0

1

0

                  13 

Equation (13) can be written as shown in Equation (14) 

A =
𝑞𝑎4

𝐷
 

𝑘𝑞

𝑘𝑥 +
2

∝2
k𝑥𝑦 +

1

∝4
𝑘𝑦
 14 

Where, 

𝑘𝑞 =      𝜕𝑅𝜕𝑄  (𝐿𝑜𝑎𝑑 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 )
𝑎

0

𝑎

0

                       15 

𝑘𝑥 =   
𝜕3

𝜕𝑅3
.
𝜕

𝜕𝑅
𝜕𝑅𝜕𝑄 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠  𝑖𝑛 𝑋 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 16

𝑎

0

𝑎

0

 

𝑘𝑥𝑦 =   
𝜕3

𝜕𝑅𝜕𝑄2
.
𝜕

𝜕𝑅
𝜕𝑅𝜕𝑄  (𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑖𝑛 𝑥 − 𝑦 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)

𝑎

0

𝑎

0

                      17 

𝑘𝑦 =   
𝜕3

𝜕𝑄3
.
𝜕

𝜕𝑄
𝜕𝑅𝜕𝑄 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠  𝑖𝑛 𝑦 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 18

𝑎

0

𝑎

0

 

Equation (14) can be written as shown in Equation (19) 

𝐴 =
𝑞𝑎4

𝐷
.𝐾                                                                                                                                                       19 

Where K is the total stiffness given by: 

𝐾 =
𝑘𝑞

𝑘𝑥 +
2

∝2
𝑘𝑥𝑦 +

1

∝4
𝑘𝑦

                                                20 

 

3.3 Determination of the Coefficient of Deflection (A) 

The stiffness coefficient of SSSS classical rectangular plate from Equation (15) to Equation (18) can be 

solved by definite integration of the shape functions deflection (h)in Equation (9) from 0 to 1. Kq, Kx, Kxy and 

Kyare respectively 0.04, 0.2361904762, 0.235918 and 0.2361904762. 

Substituting the values of the coefficients Kq, Kx, Kxy and Kyinto Equation (14) gives: 

𝐴 =
𝑞𝑎4

𝐷
 

0.04

0.2361904762 +
2

∝2
0.235918 +

1

∝4
0.2361904762

                        21 

3.4Determination of Critical Design Parameters of Classical Rectangular Plates under 

Uniformly Distributed Lateral Load 
3.4.1 Serviceability Limit State of Deflection Pure Bending Analysis of Classical Rectangular Plate 

From Deflection Limit State which states that the maximum deflection is less than allowable deflection and this 

can be mathematically written as: 

𝑊𝑚𝑎𝑥  < 𝑊𝑎                                               22 
When,  

𝑊𝑚𝑎𝑥  = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 

𝑊𝑎 = 𝐴𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛  
Substitution of Equation (19) into Equation (9) gives: 

𝑤 =
𝑞𝑎4

𝐷
.𝐾.                                                                                                                                                   23 

For maximum deflection Equation (23) can be expressed as:  

𝑊𝑚𝑎𝑥 =
𝑞𝑎4

𝐷
.𝐾. 𝑚𝑎𝑥                                                                                                          24 

When, 

𝑚𝑎𝑥 = The point of maximum stress of a lateral loaded classical plate and this occurs at the center of the plate. 

Substituting Equation (24) into the deflection Limit state condition in Equation (22) gives: 
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𝑞𝑎4

𝐷
.𝐾. 𝑚𝑎𝑥 < 𝑊𝑎                                                                       25 

3.4.1.1 Determination of Critical Imposed Load for Deflection Limit State Pure Bending Analysis of 

Classical Rectangular Plate 

Solving for the critical lateral loading from Equation (25) gives: 

𝑞 <
𝑊𝑎  .𝐷

𝐾. 𝑚𝑎𝑥  . 𝑎4
                                                                        26 

𝐷 = 𝐹𝑙𝑒𝑥𝑢𝑟𝑎𝑙 𝑟𝑖𝑑𝑔𝑖𝑡𝑦 𝑜𝑓 𝑡𝑒 𝑝𝑙𝑎𝑡𝑒 =
𝑡3  .𝐸

12  1− 𝜇2 
                                                   27 

Substituting Equation (27) into Equation (26) gives: 

𝑞 <
𝑊𝑎  .  𝑡3  .𝐸

𝐾. 𝑚𝑎𝑥  . 𝑎4  .12  1− 𝜇2 
                                                         28 

From Euro code 1 EN 1991-1-1 andMccormac et al, (2012, 2014),  

𝐼𝑓 𝑞 =  𝑞𝑠 + 𝑞𝑖 =  𝑞𝑖 + (𝜑 . 𝑡)                                 29 

When, 

𝑞 = 𝐴𝑝𝑝𝑙𝑖𝑒𝑑 𝑙𝑜𝑎𝑑;  𝑞𝑖 = 𝐼𝑚𝑝𝑜𝑠𝑒𝑑 𝐿𝑜𝑎𝑑;  𝑡 = 𝑇𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑡𝑒 𝑝𝑙𝑎𝑡𝑒;  𝑞𝑠 = 𝐷𝑒𝑎𝑑  𝑙𝑜𝑎𝑑 

𝜑 = 𝑈𝑛𝑖𝑡 𝑤𝑒𝑖𝑔𝑡 𝑜𝑓 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙   
Substituting Equation (29) into Equation (28) gives: 

𝑞𝑖 <
𝑊𝑎  .  𝑡3  .𝐸

𝐾. 𝑚𝑎𝑥  .𝑎4  .12  1− 𝜇2 
− (𝜑 . 𝑡)                                      30 

Let 

∅1 =  
1

12.𝐾. 𝑚𝑎𝑥
                                                                                                        31 

Rewriting Equation (31) gives: 

𝑞𝑖𝑐𝐷 < ∅1

𝑊𝑎  .  𝑡3 .𝐸

𝑎4  .  1 − 𝜇2 
− (𝜑 . 𝑡)                                                                                           32 

3.4.1.2 Determination of Critical Thickness for Deflection Limit State Pure Bending Analysis of 

Classical Rectangular Plate 

From Equation (28) the critical thickness  𝑡𝑐𝐷  equation can be derived when the load is known and it’s given 

as: 

𝑞.𝐾. 𝑚𝑎𝑥  .𝑎4  .12  1− 𝜇2 

𝑊𝑎 .𝐸
< 𝑡3                      33 

Solving for the critical thickness from Equation (33) gives: 

𝑡 >  
𝑞.𝐾. 𝑚𝑎𝑥  .𝑎4  .12  1− 𝜇2 

𝑊𝑎 .𝐸

3

          34 

Let 

∅2

=     12.𝐾. 𝑚𝑎𝑥
3

                                                                                                                                                                         35 

Rewriting Equation (35) gives: 

𝑡𝑐𝐷

> ∅2  
 𝑞. 𝑎4 1 − 𝜇2 

𝑊𝑎 .𝐸
 

1

3

                                                                                                                                                            36 

Equation (32) is the critical imposed load equation 𝑞𝑖𝑐𝐷  , a classical rectangular plate thickness can withstand at 

specified thickness and deflection. 

Equation (36) is the critical thickness equation  𝑡𝑐𝐷  of the rectangular plate, such that it can carry a specified 

lateral load at a specified deflection. 

3.4.2 Ultimate Limit State of Stress forPure Bending Analysis of Classical Rectangular Plate 

From Elasticity theory according to Ibearugbulem (2017), the strain energy limit state is stated as: 

 𝑈 ≤ 𝕌𝟎                                                                                        37 

Where, 

𝑈 = 𝑇𝑜𝑡𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑒𝑟 𝑣𝑜𝑙𝑢𝑚𝑒;  𝕌0 = 𝐴𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 𝑡𝑜𝑡𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑒𝑟 𝑣𝑜𝑙𝑢𝑚𝑒 
This is done in line with the work of Ibearugbulem (2017), allowable total strain energy is: 
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1

2𝐸
 𝜎𝑥

2 + 𝜎𝑦
2 + 2𝜏𝑥𝑦

2 + 2𝜇 𝜏𝑦𝑥
2 − 𝜎𝑦𝜎𝑥  

≤
𝑓𝑦

2

2𝐸
                                                                                                                 38 

Simplifying Equation (38) gives: 

 𝜎𝑥
2 + 𝜎𝑦

2 + 2𝜏𝑥𝑦
2 + 2𝜇 𝜏𝑦𝑥

2 − 𝜎𝑦𝜎𝑥  

≤ 𝑓𝑦
2                                                                                                                         39 

Let the ratios relating 𝜎𝑥  ,𝜎𝑦  𝑎𝑛𝑑 𝜏𝑥𝑦 be given as: 

𝜎𝑦 = 𝑛1𝜎𝑥                                                       40 

𝜏𝑥𝑦 = 𝑛2𝜎𝑥                                                         41 

Substituting Equation (40) and Equation (41) into Equation (39) gives: 

𝜎𝑥
2 +  𝑛1𝜎𝑥 

2 + 2 𝑛2𝜎𝑥 
2 + 2𝜇  𝑛2𝜎𝑥 

2 −  𝑛1𝜎𝑥 𝜎𝑥 ≤ 𝑓𝑦
242 

Rearranging Equation (42) Taking Square root gives: 

𝜎𝑥

≤
𝑓𝑦

  1 +  𝑛1 
2 + 2𝑛2

2 + 2𝜇𝑛2
2 − 2𝜇𝑛1 

                                                                                                                            43 

Equation (43) can be called critical stress. 

From Equation (40) and Equation (41) can rewritten as: 

𝑛1 =
𝜎y

𝜎𝑥
                                                          44 

𝑛2 =
𝜏𝑥𝑦

𝜎𝑥
                               45 

The solution of stresses acting on a classical rectangular thin plate is given as: 

𝜎𝑥 =
−𝑧𝐸

1 − 𝜇2
 𝜇
𝜕2𝑤

𝜕𝑦2
+
𝜕2𝑤

𝜕𝑥2
 46 

𝜎𝑦 =
−𝑧𝐸

1− 𝜇2
 𝜇
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
 47 

𝜏𝑦𝑥 =
−𝑧𝐸 1− 𝜇 

 1 − 𝜇2 
.
𝜕2𝑤

𝜕𝑦𝜕𝑥
48 

Substituting w = Ah, the dimensionless coordinates x = aR, y = bQ, aspect ratio ∝ = b/a into the stress solution 

in Equation (46) to Equation (48) 

𝜎𝑦 =
−𝑧𝐸𝐴

1− 𝜇2
 𝜇
𝜕2

𝜕𝑅2
+

𝜕2

∝2 𝜕𝑄2
  49 

𝜎𝑥 =
−𝑧𝐸𝐴

1 − 𝜇2
 𝜇

𝜕2

∝2 𝜕𝑄2

+
𝜕2

𝜕𝑅2
                                                                                                                                                    50 

𝜏𝑦𝑥

=
−𝑧𝐸𝐴 1− 𝜇 

 1− 𝜇2 
.
𝜕2

∝ 𝜕𝑅𝜕𝑄
                                                                                                                                                       51 

Substituting Equation 49, 50 and 51 into Equation 44 and Equation 45 gives: 

𝑛1

=
 𝜇

𝜕2

𝜕𝑅2 +
𝜕2

∝2𝜕𝑄2 

 𝜇
𝜕2

∝2𝜕𝑄2
+

𝜕2

𝜕𝑅2
 

                                                                                                                                                                 52 

𝑛2

=
 1 − 𝜇 .

𝜕2

∝𝜕𝑅𝜕𝑄

 𝜇
𝜕2

∝2𝜕𝑄2
+  

𝜕2

𝜕𝑅2
  

                                                                                                                                                            53 

Let the second derivative of the shape function stresses be denoted as: 
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𝛷𝑦1

=
𝜕2

𝜕𝑄2
                                                                                                                                                                                         54 

𝛷𝑥1

=
𝜕2

∂𝑅2
                                                                                                                                                                                          55 

𝛷𝑥𝑦 1

=
𝜕2

𝜕𝑅𝜕𝑄
                                                                                                                                                                                    56 

Substituting Equation (54), (55), and Equation (56) into Equation (52) and Equation (53) gives: 

𝑛1

=
 𝜇𝛷𝑥1

+
1

∝2 𝛷𝑦1
 

 𝜇
1

∝2
𝛷𝑦1

+ 𝛷𝑥1
 

                                                                                                                                                                  57 

𝑛2

=
 1 − 𝜇 .

1

∝
𝛷𝑥𝑦 1

 𝜇
1

∝2
𝛷𝑦1

+ 𝛷𝑥1
 

                                                                                                                                                                58 

Substituting Equation (57) and Equation (58) into Equation (43), so the critical stress can be rewritten as: 

𝜎𝑥 ≤
𝑓𝑦

 1 +  
𝜇𝛷𝑥1+

1

∝2𝛷𝑦 1

𝜇
1

∝2𝛷𝑦1
+𝛷𝑥1

 

2

+ 2  
 1−𝜇 .

1

∝
𝛷𝑥𝑦 1

𝜇
1

∝2𝛷𝑦 1
+𝛷𝑥1

 

2

+ 2𝜇  
 1−𝜇 .

1

∝
𝛷𝑥𝑦 1

𝜇
1

∝2𝛷𝑦1
+𝛷𝑥1

 

2

− 2𝜇  
𝜇𝛷𝑥1+

1

∝2𝛷𝑦1

 𝜇
1

∝2𝛷𝑦1
+𝛷𝑥1 

 

          59 

Let  

𝑛

=  1 +  
𝜇𝛷𝑥1

+
1

∝2 𝛷𝑦1

𝜇
1

∝2
𝛷𝑦1

+ 𝛷𝑥1

 

2

+ 2 
 1− 𝜇 .

1

∝
𝛷𝑥𝑦 1

𝜇
1

∝2
𝛷𝑦1

+ 𝛷𝑥1

 

2

+ 2𝜇  
 1 − 𝜇 .

1

∝
𝛷𝑥𝑦 1

𝜇
1

∝2
𝛷𝑦1

+ 𝛷𝑥1

 

2

− 2𝜇  
𝜇𝛷𝑥1

+
1

∝2 𝛷𝑦1

 𝜇
1

∝2
𝛷𝑦1

+ 𝛷𝑥1
 
    60 

Substituting Equation (60) into Equation (59) gives: 

𝜎𝑥

≤
𝑓𝑦
𝑛

                                                                                                                                                                                            61 

Substituting Equation (54) and Equation (55) into Equation (50) gives: 

𝜎𝑥

=
−𝑧𝐸𝐴

1− 𝜇2
 𝜇
𝛷𝑦1

∝2

+ 𝛷𝑥1
                                                                                                                                                           62 

Substituting Equation (62) into Equation (61) gives: 

−𝑧𝐸𝐴

1 − 𝜇2
 𝜇
𝛷𝑦1

∝2
+ 𝛷𝑥1

 

≤
𝑓𝑦

𝑛
                                                                                                                                                           63 

Substituting Equation (19) and mid plane Z=t/2into Equation (63) gives: 

 
−𝑡 .𝐸 . 𝑞 .𝑎4 .𝐾 .  𝜇

1

∝2 𝛷𝑦1
+ 𝛷𝑥1

 

2 .𝐷.  1 − 𝜇2 
 ≤

𝑓𝑦

𝑛
64 

Substituting Equation (27) and Equation (29) into Equation (64) gives: 

𝑞𝑖 +  𝜑 . 𝑡 ≤
𝑓𝑦  . 𝑡2  .  1 − 𝜇2 

−6.𝐾 .  𝑛 .  1 − 𝜇2 . 𝑎4  .  𝜇
1

∝2
𝛷𝑦1

+ 𝛷𝑥1
 

65 

Let 
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∅3

=
1

−6.𝐾
                                                                                                                                                                                       66 

Substituting Equation (66) into Equation (65) to get the critical imposed lateral load and this gives: 

𝑞𝑖𝑐𝐸 ≤
∅3 . 𝑓𝑦   . 𝑡2

  𝑛  . 𝑎4  .  𝜇
1

∝2
𝛷𝑦1

+ 𝛷𝑥1
 
−  𝜑 . 𝑡 67 

3.4.2.3 Determination of Critical Thickness for Elastic Limit State Pure Bending Analysis of Classical 

Rectangular Plate 

From Equation (64) the critical thickness  𝑡𝑐𝐸  can be derived when the load is known and it’s given as: 

𝑡𝑐
2 ≥

−1 .𝑞.  𝑛 .𝑎4  .  𝜇
1

∝2 𝛷𝑦1
+ 𝛷𝑥1

 . 12  1− 𝜇2 . 𝑘

𝑓𝑦  . 2 .  1 − 𝜇2 
68 

Let, 

∅4

= (6. 𝑘)
1

2                                                                                                                                                                                   69 

Substituting Equation (69) into Equation (68) to get the critical thickness and this gives: 

𝑡𝑐𝐸

≥ ∅4  
−1. 𝑞.  𝑛 .𝑎4 .  𝜇

1

∝2 𝛷𝑦1
+ 𝛷𝑥1

 

𝑓𝑦
 

1

2

                                                                                                                          70 

Equation (67) is the critical imposed load equation 𝑞𝑖𝑐𝐸  , a classical rectangular plate thickness can withstand at 

specified thickness and material strength. 

 Equation (70) is the critical thickness equation  𝑡𝑐𝐸  of classical rectangular plate such that it can carry a 

specified lateral load at a specified material strength.  

Equations of critical design parameters of classical rectangular plates under uniformly distributed lateral load 

are: 

𝑞𝑖𝑐𝐷 < ∅1

𝑊𝑎  .  𝑡3 .𝐸

𝑎4  .  1 − 𝜇2 
− 𝜑 . 𝑡                                                                                                                                                        71 

𝑡𝑐𝐷

> ∅2  
 𝑞. 𝑎4 1 − 𝜇2 

𝑊𝑎 .𝐸
 

1

3

                                                                                                                                                        72 

𝑞𝑖𝑐𝐸 ≤
∅3 . 𝑓𝑦   . 𝑡2

  𝑛  . 𝑎4  .  𝜇
1

∝2
𝛷𝑦1

+ 𝛷𝑥1
 

−  𝜑 . 𝑡                                                                                                                                 73 

𝑡𝑐𝐸

≥ ∅4  
−1. 𝑞.  𝑛 .𝑎4 .  𝜇

1

∝2 𝛷𝑦1
+ 𝛷𝑥1

 

𝑓𝑦
 

1

2

                                                                                                                         74 

3.4.3 Determination of Maximum Stress Coefficient for SSSS Boundary Conditions. 

The point of maximum stress for a classical rectangular plate under uniformly distributed lateral load occurs at 

the center of the plate and this can be mathematically represented as: 

𝑚𝑎𝑥 occurs at  𝑅 = 𝑄 = 0.5 . 
3.4.3.1 Maximum Stress Coefficient for SSSS Classical Rectangular Plate 

From Equation (9), the shape function of SSSS plate is given as 

 =   𝑅 − 2𝑅3 + 𝑅4 .  𝑄 − 2𝑄3 + 𝑄4   

𝑚𝑎𝑥 =   0.5− 2(0.5)3 + 0.54 .   0.5− 2(0.5)3 + 0.54   

= 0.0977                                                                             75 

Substituting Equation 9 into Equation 55 gives:  
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𝛷𝑥1
=
𝜕2

𝜕𝑅2
= 12 0.52 − 0.5  0.5 −  2 ∗ 0.53 + 0.54 

= −0.9375                                                                                   76 

Substituting Equation 9 into Equation 56 gives:  

𝛷𝑥𝑦1
=

𝜕2

𝜕𝑅𝜕𝑄
=  1 −  6 ∗ 0.52 +  4 ∗ 0.53   1−  6 ∗ 0.52 +  4 ∗ 0.53  

= 0.0000                                                 77 

Substituting equation 9 into Equation 54 gives:  

𝛷𝑦1
=
𝜕2

𝜕𝑄2
= 12 0.52 − 0.5  0.5−  2 ∗ 0.53 + 0.54 

= −0.9375                                                                                   78 

 

 

 

Numerical Examples  
Numerical examples were performed using the critical design (limit) parameters listed in Equation (71), 

Equation (72),Equation (73) and Equation (74), and the parameter used for this example are as follows in Table 

1: 

 

Table 1: Parameters for Numerical Examples 
SYMBOLS VALUES 

𝐸 207 × 109𝑁 𝑚2  

𝛭 0.3 

𝛷 77 𝑘𝑁 𝑚3  

𝐴 1𝑚 

𝑓𝑦  250N/mm
2
, 415N/mm

2
, 

Wa 5mm, 10mm, 15mm 

T 5mm, 10mm, 15mm, 20mm 

𝛼 =
𝑏

𝑎
 

1, 1.5, 2 

q 50kN, 100kN, 150kN, 200kN 

 

IV. RESULTS AND DISCUSSION 
For critical lateral imposed load numerical 

studies, plate thicknesses of 5mm, 10mm, 15mm, 

20mm were considered. The specified deflections, 

material strength, physical and geometric 

properties above and Table 2 were substituted into 

the critical lateral imposed load equation for 

serviceability limit state of deflection (𝑞𝑖𝑐𝐷 ) in 

Equation (71) and also the critical lateral imposed 

load equation for ultimate limit state of stress (𝑞𝑖𝑐𝐸 ) 

in Equation (73). Results of this substitutions with 

respect to the considered aspect ratios in the 

numerical examples parameters gave the critical 

lateral imposed load from Table 3 to Table 4 and 

Table 5, choosing the lesser load between the 

deflection and the stress loads of a specified plate 

thickness, aspect ratio and boundary condition. 

This load is said to be the critical lateral imposed 

load the plate thickness can withstand without 

failure and also satisfying the design limit state 

conditions. 

For critical thickness numerical studies, 

lateral loads, 50kN, 100kN, 150kN and 200kN 

were considered. The specified deflections, 

material strength, physical and geometric 

properties above and Table 2 were substituted into 

the critical thickness equation for serviceability 

limit state of deflection (𝑡𝑐𝐷 ) in Equation (72) and 

also the critical thickness equation for ultimate 

limit state of stress (𝑡𝑐𝐸 ) in Equation (74). Results 

of this substitutions with respect to the considered 

aspect ratios in the numerical examples parameters 

were tabulated on Table 6, Table 7 and Table 8 and 

the critical thicknesses was selected choosing the 

larger thickness between the deflection and the 

stress thicknesses of a specified loads intensity, 

aspect ratio and boundary condition. This thickness 

is said to be the critical classical plate thickness 

that can withstand the specified lateral load 

intensity without failure and also satisfying the 

design limit state conditions. 
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Table 2 

𝜶 =
𝒃

𝒂
 

𝑆𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠  𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 

𝑲 

∅𝟏 ∅𝟐 ∅𝟑 ∅𝟒 Value on n 

with 

Poisson’s 

ratio, 𝜇 =
0.3 

1.0 0.042363 20.13427 0.367582 -3.9342 0.50416 2.6 

1.5 0.08121 10.50303 0.456627 -2.0523 0.69804 1.8256 

2.0 0.108427 7.866585 0.502811 -1.5371 0.80658 1.5687 

 

4.1.5.3  Critical Lateral Imposed Loads for Classical Rectangular Plates 

Table 3: Critical lateral imposed loads for SSSS classical rectangular plate on aspect ratio of 1, under 

specified allowable deflections, thicknesses and material strengths. 

 

Table 4: Critical lateral imposed loads for SSSS classical rectangular plate on aspect ratio of 1.5, under specified 

allowable deflections, thicknesses and material strengths. 

Critical lateral imposed loads (𝑞𝑖𝑐  ) 

t(mm) 
𝐴𝑠𝑝𝑒𝑐𝑡 𝑟𝑎𝑡𝑖𝑜𝑛 ∝=

𝑏

𝑎
=  1 

Wa = 5mm 𝑓𝑦=250N/mm
2
 𝑞𝑖𝑐  (kN) Wa = 5mm 𝑓𝑦=415N/mm

2
 𝑞𝑖𝑐  (

kN) 
5 2.4775 7.37484 2.4775 2.4775 12.4963 2.47

75 10 22.13 30.2694 22.13 22.13 50.7553 22.1

3 15 76.1324 68.6835 68.6835 76.1324 114.777 76.1

324 20 181.66 122.617 122.617 181.66 204.561 181.

66 t(mm) Wa = 10mm 𝑓𝑦=250N/mm
2
 𝑞𝑖𝑐  (kN) Wa = 10mm 𝑓𝑦=415N/mm

2
 𝑞𝑖𝑐  (

kN) 
5 5.33999 7.37484 5.33999 5.33999 12.4963 5.33

999 10 45.0299 30.2694 30.2694 45.0299 50.7553 45.0

299 15 153.42 68.6835 68.6835 153.42 114.777 114.

777 20 364.86 122.617 122.617 364.86 204.561 204.

561 t(mm) Wa = 15mm 𝑓𝑦=250N/mm
2
 𝑞𝑖𝑐  (kN) Wa = 15mm 𝑓𝑦=415N/mm

2
 𝑞𝑖𝑐  (

kN) 
5 8.20249 7.37484 7.37484 8.20249 12.4963 8.20

249 10 67.9299 30.2694 30.2694 67.9299 50.7553 50.7

553 15 230.707 68.6835 68.6835 230.707 114.777 114.

777 20 548.059 122.617 122.617 548.059 204.561 204.

561 

Critical lateral imposed loads (𝑞𝑖𝑐  ) 

t(mm) 
𝐴𝑠𝑝𝑒𝑐𝑡  𝑟𝑎𝑡𝑖𝑜𝑛 ∝=

𝑏

𝑎
=  1.5 

Wa = 5mm 𝑓𝑦=250N/mm
2
 𝑞𝑖𝑐  (kN) Wa = 5mm 𝑓𝑦=415N/mm

2
 𝑞𝑖𝑐  (kN) 

5 1.10822 6.22784 1.10822 1.10822 10.5923 1.10822 

10 11.1758 25.6814 11.1758 11.1758 43.1393 11.1758 
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Table 5: Critical lateral imposed loads for SSSS classical rectangular plate on aspect ratio of 2, under specified 

allowable deflections, thicknesses and material strengths. 

 

 

4.1.5.4  Critical Thicknesses for Classical Rectangular Plates 

Table 6: Critical thicknesses for SSSS classical rectangular plate on aspect ratio of 1, under specified allowable 

deflections, lateral imposed loads and material strengths. 

15 39.1619 58.3606 39.1619 39.1619 97.6408 39.1619 

20 94.0261 104.265 94.0261 94.0261 174.097 94.0261 

t(mm) Wa = 10mm 𝑓𝑦=250N/mm
2
 𝑞𝑖𝑐  (kN) Wa = 10mm 𝑓𝑦=415N/mm

2
 𝑞𝑖𝑐  (kN) 

5 2.60144 6.22784 2.60144 2.60144 10.5923 2.60144 

10 23.1215 25.6814 23.1215 23.1215 43.1393 23.1215 

15 79.4789 58.3606 58.3606 79.4789 97.6408 79.4789 

20 189.592 104.265 104.265 189.592 174.097 174.097 

t(mm) Wa = 15mm 𝑓𝑦=250N/mm
2
 𝑞𝑖𝑐  (kN) Wa = 15mm 𝑓𝑦=415N/mm

2
 𝑞𝑖𝑐  (kN) 

5 4.09466 6.22784 4.09466 4.09466 10.5923 4.09466 

10 35.0673 25.6814 25.6814 35.0673 43.1393 35.0673 

15 119.796 58.3606 58.3606 119.796 97.6408 97.6408 

20 285.158 104.265 104.265 285.158 174.097 174.097 

Critical lateral imposed loads (𝑞𝑖𝑐  ) 

t(mm) 
𝐴𝑠𝑝𝑒𝑐𝑡 𝑟𝑎𝑡𝑖𝑜𝑛 ∝=

𝑏

𝑎
=  2 

Wa = 5mm 𝑓𝑦=250N/mm
2
 𝑞𝑖𝑐  (kN) Wa = 5mm 𝑓𝑦=415N/mm

2
 𝑞𝑖𝑐  (kN) 

5 0.7334 5.69159 0.7334 0.7334 9.70215 0.7334 

10 8.17716 23.5364 8.17716 8.17716 39.5786 8.17716 

15 29.0417 53.5343 29.0417 29.0417 89.6293 29.0417 

20 70.0373 95.6855 70.0373 70.0373 159.854 70.0373 

t(mm) Wa = 10mm fy=250N/mm
2
 qic  (kN) Wa = 10mm fy=415N/mm

2
 qic  (kN) 

5 1.85179 5.69159 1.85179 1.85179 9.70215 1.85179 

10 17.1243 23.5364 17.1243 17.1243 39.5786 17.1243 

15 59.2383 53.5343 53.5343 59.2383 89.6293 59.2383 

20 141.615 95.6855 95.6855 141.615 159.854 141.615 

t(mm) Wa = 15mm fy=250N/mm
2
 qic  (kN) Wa = 15mm fy=415N/mm

2
 qic  (kN) 

5 2.97019 5.69159 2.97019 2.97019 9.70215 2.97019 

10 26.0715 23.5364 23.5364 26.0715 39.5786 26.0715 

15 89.435 53.5343 53.5343 89.435 89.6293 89.435 

20 213.192 95.6855 95.6855 213.192 159.854 159.854 

Critical thicknesses (tc ) 
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Table 7: Critical thicknesses for SSSS classical rectangular plate on aspect ratio of 1.5, under specified 

allowable deflections, lateral imposed loads and material strengths. 

 

Table 8: Critical thicknesses for SSSS classical rectangular plate on aspect ratio of 2, under specified allowable 

deflections, lateral imposed loads and material strengths. 

q(kN) 
Aspect ration ∝=

b

a
=  1 

Wa = 5mm fy=250N/mm
2
 tc(m) Wa = 5mm fy=415N/mm

2
 tc(m) 

50 0.01297 0.01269 0.01297 0.01297 0.00985 0.01297 

100 0.01635 0.01795 0.01795 0.01635 0.01393 0.01635 

150 0.01871 0.02198 0.02198 0.01871 0.01706 0.01871 

200 0.02059 0.02538 0.02538 0.02059 0.0197 0.02059 

q(kN) Wa = 10mm fy=250N/mm
2
 tc(m) Wa = 10mm fy=415N/mm

2
 tc(m) 

50 0.0103 0.01269 0.01269 0.0103 0.00985 0.0103 

100 0.01297 0.01795 0.01795 0.01297 0.01393 0.01393 

150 0.01485 0.02198 0.02198 0.01485 0.01706 0.01706 

200 0.01635 0.02538 0.02538 0.01635 0.0197 0.0197 

q(kN) Wa = 15mm fy=250N/mm
2
 tc(m) Wa = 15mm fy=415N/mm

2
 tc(m) 

50 0.009 0.01269 0.01269 0.009 0.00985 0.00985 

100 0.01133 0.01795 0.01795 0.01133 0.01393 0.01393 

150 0.01297 0.02198 0.02198 0.01297 0.01706 0.01706 

200 0.01428 0.02538 0.02538 0.01428 0.0197 0.0197 

Critical thicknesses (tc ) 

q(kN) 
Aspect ration ∝=

b

a
=  1.5 

Wa = 5mm fy=250N/mm
2
 tc(m) Wa = 

5mm 
fy=415N/mm

2
 tc(m) 

50 0.01612 0.01375 0.01612 0.01612 0.01067 0.01612 

100 0.02031 0.01944 0.02031 0.02031 0.01509 0.02031 

150 0.02324 0.02381 0.02381 0.02324 0.01848 0.02324 

200 0.02558 0.0275 0.0275 0.02558 0.02134 0.02558 

q(kN) Wa = 10mm fy=250N/mm
2
 tc(m) Wa = 

10mm 
fy=415N/mm

2
 tc(m) 

50 0.01279 0.01375 0.01375 0.01279 0.01067 0.01279 

100 0.01612 0.01944 0.01944 0.01612 0.01509 0.01612 

150 0.01845 0.02381 0.02381 0.01845 0.01848 0.01848 

200 0.02031 0.0275 0.0275 0.02031 0.02134 0.02134 

q(kN) Wa = 15mm fy=250N/mm
2
 tc(m) Wa = 

15mm 
fy=415N/mm

2
 tc(m) 

50 0.01117 0.01375 0.01375 0.01117 0.01067 0.01117 

100 0.01408 0.01944 0.01944 0.01408 0.01509 0.01509 

150 0.01612 0.02381 0.02381 0.01612 0.01848 0.01848 
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CONCLUSIONS 
Based on the research results obtained 

from this present study, the boundary conditions, 

aspect ratios, allowable deflections and material 

strength plays a significant effect on the critical 

lateral imposed load and critical thicknessof 

classical rectangular plate. 

The critical design parameters tables 

qic  and tc  herein are very reliable and can be used 

in the determination of suitable plate thickness 

from a specified lateral load and also the critical 

lateral imposed load a specified plate thickness can 

withstand, under specified condition of operations. 
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Critical thicknesses (tc ) 

q(kN) 
Aspect ration ∝=

b

a
=  2 

Wa = 5mm fy=250N/mm
2
 tc(m) Wa = 

5mm 
fy=415N/mm
2
 

tc(m) 

50 0.01775 0.01434 0.01775 0.01775 0.01113 0.01775 

100 0.02236 0.02028 0.02236 0.02236 0.01574 0.02236 

150 0.02559 0.02484 0.02559 0.02559 0.01928 0.02559 

200 0.02817 0.02869 0.02869 0.02817 0.02226 0.02817 

q(kN) Wa = 10mm fy=250N/mm
2
 tc(m) Wa = 

10mm 
fy=415N/mm
2
 

tc(m) 

50 0.01409 0.01434 0.01434 0.01409 0.01113 0.01409 

100 0.01775 0.02028 0.02028 0.01775 0.01574 0.01775 

150 0.02031 0.02484 0.02484 0.02031 0.01928 0.02031 

200 0.02236 0.02869 0.02869 0.02236 0.02226 0.02236 

q(kN) Wa = 15mm fy=250N/mm
2
 tc(m) Wa = 

15mm 
fy=415N/mm
2
 

tc(m) 

50 0.0123 0.01434 0.01434 0.0123 0.01113 0.0123 

100 0.0155 0.02028 0.02028 0.0155 0.01574 0.01574 

150 0.01775 0.02484 0.02484 0.01775 0.01928 0.01928 

200 0.01953 0.02869 0.02869 0.01953 0.02226 0.02226 


